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A study is made of periodic three-dimensional systems of points in which some points are connected 
to three and some to four others, and examples are given of crystals with structures based on certain 
of these nets. Radiating nets are briefly discussed, and the basic three-dimensional 3-, (3.4)-, and 4- 
connected nets are summarized. 

In parts I and II (Wells 1954a, b) an examination was 
made of some of the simpler 3-connected and 4-con- 
nected three-dimensional nets, and further examples 
of more complex nets were given in parts V, VI, and 
VII (Wells 1955, 1956; Wells & Sharpe 1963). In parti- 
cular it was shown that the simplest three-dimensional 
3-connected nets (i.e. those with the smallest possible 
value of Z, the number of points in the topological 
repeat unit) are both systems of decagons (10 3 or  10,3) 
having Z--4 .  In one of these nets all the links are 
equivalent (with y =  10, y being the number of n-gons 
to which each link is common), and if built with equal 
links and interbond angles of 120 ° the net has cubic 
symmetry and Z* = 8, where Z* is the number of points 
in the crystallographic unit cell. It is the 3-connected 
analogue of the diamond net. The latter, the simplest 
three-dimensional 4-connected net, has the minimum 
number (2) of points in the topological repeat unit, 
is a system of puckered 6-gons, and in its most symmet- 
rical configuration (with equal bonds and interbond 
angles of 109½ °) has cubic symmetry and Z = 8 .  

Of plane tesseUations consisting entirely of 3-gons, 
4-gons, or 6-gons there are the special cases: ~06= 1, 
~04= 1, and ~03= 1, where ~0~ is the fraction of p-con- 
nected points. For 5-gons the solution with the lowest 
values of p is" (o3 =2,  ~04=½, and this corresponds to 
two nets [Fig. l(b) and (c)] having different relative 
arrangements of the 3- and 4-connected points. Here 
we consider some of the simpler (3,4)-connected three- 
dimensional nets which we expect, by analogy with the 
two-dimensional nets 

p 3 3 and 4 4 6 
n 6 5 4 3 

to fit into a family of basic three-dimensional nets. 
Before doing so it will be convenient to comment on a 
question of nomenclature. 

(c) 

In part I a 3-connected net was described as uniform 
if the shortest circuit starting from any point along 
any link and returning, along any other link, to the 
starting point passed through the same total number 

of links (points). If the shortest circuit was an n-gon 
the net was described as an n 3 net; we shall prefer the 
symbol {n,p} for ap-connected net in which the shortest 
circuits are n-gons. As in part VII we shall denote by 
x the number of n-gons to which a point is common 
and by y the number of n-gons to which a link is com- 
mon. In a uniform 3-connected net the minimum value 
o f y  is clearly 2 (in contrast to the erroneous statement 
on p. 543 of part I), and the minimum value of x is 
therefore 3 since x/y =p/2 (part 7, Appendix). The pos- 
session of these minimum values of x and y is a neces- 
sary but not sufficient condition of uniformity, for 
there may be several alternative n-gon circuits from 
a point involving the same two links, in which case x 
could equal or exceed 3 while the shortest circuits 
including other pairs of links would not necessarily 
be n-gons. The condition of uniformity evidently re- 

(a) (b) 

Uniform nets 

(d) (e) 
Fig. 1. Plane nets: 

(a) {6,3}, (b) {5,43}, (c) {4,4}, (d) {3,6}. 
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quires that all the three combinations of the links 
from each point taken two at a time are parts ofn-gons. 
(Note that the net 21 of part I is not a uniform net and 
should be deleted from Table 3 in that paper. This 
net should also be excluded from Fig. 6 and the pre- 
ceding text in part V). 

The idea of defining uniform nets in the above way 
arose in connection with 3-connected nets. It is neces- 
sary to examine whether the concept can be usefully 
applied to three-dimensional nets having higher values 
of p. The condition for uniformity implies that the 
minimum values of x and y are respectively p(p  - 1)/2 
and ( p - 1 ) .  The simplest three-dimensional 6-connec- 
ted net is the P lattice, for which x =  12 and y = 4 ,  so 
that our criterion, requiring minimum values of 15 and 
5, is obviously too rigorous. Of the 15 combinations of 
6 bonds three pairs are collinear in the P lattice (and 
in the I and F lattices 4 and 6 pairs respectively), and 
circuits involving pairs of collinear bonds in these nets 
are larger than for the other pairs. A similar compli- 
cation exists in a net such as that of Fig. l(d) of part 
VII with 4 coplanar links from each point. Here only 
4 of the 6 combinations of 2 links from any point form 
parts of 6-gons, the shortest circuits including two col- 
linear bonds being 8-gons. This can be expressed by the 
symbol 6482 analogous to that for a polyhedron (e.g. 
3242 for the cuboctahedron). However, the fact that 
it is possible to have points of the type//6 with four 
coplanar links shows that this problem is not simply 
related to the arrangement of the 4 bonds from a 4- 
connected point. The net of Fig.2 has certain similar- 
ities to the diamond net, being a system of 6-gons 
with the same values o f x  (12) and y (6). The point P is 
of the type 66 but Q is 6482. 

Although, therefore, it is not feasible to extend the 
simple but rigorous condition for uniformity to more 
highly connected nets we shall retain it here for (3,4)- 
connected nets and distinguish as uniform {n, 43} nets 
only those in which the shortest circuit is an n-gon for 
any pair of links from each of the 3-connected and 
from each of the 4-connected points, i.e. the symbol 
is (n3)a(n6)b where a and b are the numbers of 3- and 
4-connected points in the topological repeat unit. 

-..( P 

Fi~. 2. 4-connected net (see text). 

(3,4)-connected nets 

For a polyhedron having only 3- and 4-connected ver- 
tices the number of the former must be even, and this 
is also true of the number of 3-connected points in the 
repeat unit of a periodic network of this kind (two- or 
three-dimensional). The minimum value of Z is there- 
fore 3. If ~Un is the fraction of the polygons in a plane 
net which are n-gons it can be shown that 

S n ~ n  = 2(3m + 4)/(m + 2) 

where m is the ratio of the numbers of 3-and 4-con- 
nected points. For m = 2 ,  .Sng/n=5, so that the sim- 
plest solution is gts = 1. As already noted there are two 
forms of the 5-gon net. The next simplest solutions are: 
///4=1//6=1; /p'3=~//7 =1. These nets are illustrated in 
Fig. 3. 

For three-dimensional nets the simplest (topo- 
logical) repeat unit is the linear system of three points 
intermediate between those for 3-connected and 4- con- 
nected nets (Fig. 4). In diagrams of three-dimensional 
(3,4)-connected nets the 4-connected points are distin- 
guished as shaded circles. The minimum value of Z 
is here the same as for a two-dimensional net, in con- 
trast to 3-connected and 4-connected nets for which the 
minimum values of Z for plane and three-dimensional 
nets are respectively 2 and 4, and 1 and 2. 

No attempt has been made to derive the three-dimen- 
sional nets systematically. In Table 1 are listed the pos- 
sible numbers c3 and c4 of 3- and 4-connected points in 

(a) Z -3  (b) Z -6  

(c) Z - 3  (d) Z =3 

Fig. 3. Plane (3,4)-connected nets. 

= 4 3 2 
Fig. 4. Repeat  units 

for 3-, (3,4)-, and  4-connected three-dimensional  nets. 

AC 18--5" 
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repeat units having Z from 3 to 7. There are two nets 
with Z = 3  which differ in the arrangement of the 3- 
and 4-connected points. Of these one is a uniform net, 
a three-dimensional array of 8-gons which is inter- 
mediate between {10,3} and {6,4}. The space-group cor- 
responding to the most symmetrical configuration of 
this net is 174m2 with the 4-connected points in 2(d), 
(0~) etc. and the 3-connected points in 4(e), (00z) etc. 
It is not possible to have interbond angles of 120 ° for 
the 3-connected points and 109½ ° for the 4-connected 
points, and two possible configurations are: 

c~=120°; z=X~; c/a=1/3; 
~=109½°; z=1/3/(41/3+8);  c/a=(1/3+2)/I/2. 

The former is illustrated in Fig. 5(a). Although there are 
two kinds of non-equivalent link all have y =  8; for 
the 3-connected points x =  12 and for the 4-connected 
points x =  16, giving Xmean = 13½. 

Table 1. Some three-dimensional (3,4)-connected nets 

z c3 c4 n-gons Full symbol Figure 
3 2 1 8* (83)2(86 ) 5(a) 

8 ,10  (83)2(8510) 5(b) 
4 2 2 - -  - -  - -  
5 4 1 8* (83)4(86 ) 6 

2 3 7* (73)2(76)3 7(a) 
7 6 1 9* (93)6(96) 7(b) 

14 8 6 8* - -  8 
6,8 --  9 

* uniform net 

There is a second net with Z =  3 [Fig. 5(b)] differing 
from that of Fig. 5(a) in having the 4-connected points 
directly connected. In this second net one of the six 
shortest circuits involving a pair of links from a 4- 
connected point is a 10-gon; this is accordingly not 
a uniform net. 

The net of Fig. 6 has Z = 5  (c3=4, c4=1) and is a 
uniform 8-gon net. A highly symmetrical configuration 
with equal links, interbond angles of 120 ° (c3) and 
90 ° (c4) has Z * =  10 in the space-group 14/mmm with 
the 4-connected points in 2(a), (000) etc. and the 3- 
connected points in 8(h), (xxO) etc. with x = ± .  c/a= 5 '  

1/6/5. For all the links in this net y = 6. For the 3-con- 
nected points x = 9  and for the 4-connected points 
x =  12, giving Xmean=9~ .  It is interesting to compare 
with the 8-gon nets of Figs. 5(a) and 6 the uniform 
3-connected 8-gon nets 5 and 6 of part I: 

(3,4)-connected Fig. 5(a) 
(3,4)-connected Fig. 6 
3-connected nets 5 and 6 

X Xmean Y Ymean 
C3 C 4  

12 16 13½ 8 8 
9 12 93 6 6 
4 - 4 2 and 3 22 

A second net with Z =  5 having c 3 = 2 and c4 = 3 is a 
uniform 7-gon net [Fig. 7(a)]. For  Z =  7 there are three 
possible ratios of c3: c4, and one of the nets is a uniform 
9-gon net [Fig. 7(b)]. These last two nets are illustrated 
as topological diagrams since it has not been ascer- 

, i 

: i 
: i 

t ~ ~  - : ' q  ~ . . . . . . .  

(a) ~h~ 

Fig. 5. The two simplest three-dimensional (3,4)-connected nets. 
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Fig. 6. A uniform (3,4)-connected 8-gon net. 

tained whether they have configurations with more 
symmetrical arrangements of links from the 3- and 
4-connected points. 

Nets in which the 3-connected points are linked 
only to 4-connected points and v i c e  v e r s a  

Special interest attaches to nets of this type. It is pos- 
sible only if Z is a multiple of 7 and the ratio c3 :c4= 
4:3. No example of a net of this kind with Z = 7  has 
been found but two are known with Z = Z * =  14. The 
Pt and O atoms in NaPt304 (Waser & McClanahan, 
1951) form a (3,4)-connected net (Fig. 8) in which the 
Pt atoms form four bonds to O and the O atoms three 
to Pt. (In this description we omit the weak additional 
Pt -Pt  bonds.) The space-group is Pm3n with Pt in 
6(c), + (¼0½), and O in 8(e), (000, ~ ) +  (¼¼¼, ¼~=~4) etc. 
In contrast to this structure in which there is square 

// J /  " ~ t  

• ., / 

/ 

/ 

(a) (bl 
Fig. 7. Topological diagrams of uniform (3,4)-connected 

7-gon and 9-gon nets. 

planar bonding by Pt, the phenacite (Ge3N4) structure 
(Fig. 9) has tetrahedral coordination of the 4-connected 
atoms. (The bonds from the 3-connected atoms are 
approximately coplanar in both structures). The net of 
Fig. 9 represents the idealized structure of Ge3N4 and 
a number of complex oxides and fluorides of the type 
A2BX4 in which both A and B are tetrahedrally coor- 
dinated, including Be2GeO4 and Be2SiO4 (phenacite), 
Zn2SiO4, Li2MoO4, LizWO4, and LizBeF4. 

Three-dimensional borate ions 

Networks built of 3- and 4-connected points are suit- 
able for borates since by placing an O atom along each 
link we may have planar BO3 and tetrahedral BO4 groups 
joined by sharing O atoms. If L is the number of links 
in the repeat unit, L=½(3c3-t-4c4), and the formula of 
such a three-dimensional borate ion would be BzOL, 

-k:/-- . . . . . . . . . . . . . . . . . . . . . .  

..-2 . . . . . . . . .  '. . . . . . . . . . . . . . . . .  - 

; , \  ', 

' . _ i  . . . . . . . . . . . . .  ; 

i° - i .~" 

Fig. 8. The (3,4)-connected net representing the arrangement 
o f  O and Pt atoms in NaPt304.  (Shaded circles represent 
Pt a toms;  Na  atoms at (000) and (½½½) omitted.) 
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Fig. 9. The (3,4)-connected net representing the structure of Ge3N4 (or phenacite). Shaded circles represent N atoms. 

i.e. B305, B407, BsOs, B509, BsOll, etc. (The charge on 
the ion is the value of e4). Borates of this kind can 
be prepared and the structures of compounds of the 
first three types have been determined, namely, CsB3Os, 
LizB407, and KBsO8. They do not, however, corres- 
pond to any of the networks of Table 1. We have been 
interested here in finding the nets with the largest cir- 
cuits; the borates are built from sub-units containing 
the smallest, most compact, ring systems. In Fig. 10 
the O atoms along each link are omitted. Each unit 
has four free links and can form a net of the diamond 
type in which the repeat unit necessarily consists of 
two of the units of Fig. 10, so that Z = 6 ,  8, and 10 
respectively. A further point of interest is that whereas 
in CsB305 the structure consists of one three-dimen- 
sional framework ion (with the Cs + ions in the inter- 
stices) in the other two salts there are two interpene- 
trating frameworks as, for example, in Cu20. 

Summary of basic nets 

Since the repeat unit of a three-dimensional net need 
possess only six free links we may recognize the fol- 
lowing set of basic nets: 

Z p n 
Cubic{10,3} 4 3 10 
Fig. 5(a) 3 3,4 8 
Diamond 2 4 6 
P lattice 1 6 4 

(a) 

<> 
(b) 

n 
compare the 6 
plane nets 5 

4 
3 

(el 
Fig. 10. Structural units in polyborate ions: 
(a) (B3Os)n n-, (b) (B407)n 2n-, (c) (BsOs)n n-. 

More highly connected nets possess more than the 
essential number of free links from their repeat units. 
The most symmetrical forms of 8-connected and 12- 
connected nets are the cubic I and F lattices with Z*--  2 
and 4 and n--4 and 3 respectively; they may be formed 
from 2 and 4 interpenetrating P lattices respectively. 

Between {10,3} and the plane {6,3} are the {7,3}, 
{8,3}, and {9,3} nets derived in parts I and VI, and 
intermediate between {10,3} and {6,4} lie the (3,4)- 
connected nets with 7-, 8-, and 9-gon circuits. The two 
remaining gaps in Table 2, R3, 4 and Rs, are filled by 
infinite three-dimensional radiating (i.e. non-periodic) 
nets, which we now consider. 

Table 2. S o m e  basic nets  

3 3 and 4 4 

3 

4 I Plane {4,4} 

5 I Plane {5,4 a} Fig. 14 R5 

6 Plane {6,3} Fig. 15 R3,4 Diamond 2 

7 {7,3} Fig. 7(a) 

8 {8,3} Fig. 5(a) 3 

9 {9,3 } Fig. 7(b) 

10 Cubic {10,3}4 

6 

Plane {3,6} 

P lattice 1 

Radiating nets 

In this series of papers we have been concerned solely 
with periodic nets or surface tessellations. Since the 
amount of information obtainable by normal X-ray 
studies is largely determined by the extent to which 
a system approximates to a regular diffraction grating, 
crystaUographers are usually interested in regular re- 
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peating patterns having long-distance order. However, 
other types of structure can be envisaged which may 
be important in, for example, crystallizing polymers 
or glasses. Ordering might start at a point and lead to 
some sort of structure which cannot extend indefinitely 
for purely topological or geometrical reasons. In a co- 
valent structure or glass a system of 5-rings might be 
formed which is not part of any possible three-dimen- 
sional network; in a sphere packing transition to a 
more close-packed lattice packing may be possible, as 
for the icosahedral sphere packing (MacKay, 1962). 
Systems which, like the icosahedral sphere packing, 
radiate from a unique central point are obviously of 
interest in this connexion. The following note shows 
the relation of certain radiating systems to the three- 
dimensional polyhedra of part VII and to the basic 
nets of Table 2. 

Plane radiating nets 
(1) Any {n, p} may be drawn as a plane radiating net. 

Rather than drawing the edges of the polygons as 
straight lines it is convenient to draw these nets as 
series of points on concentric circles. 

(2) For {3,3}, {3,4}, {3,5},{4,3}, and {5,3} the nets are 
finite, being simply the Schlegel diagrams of the 
five Platonic solids [Fig. 11, (a)-(e)]. 

(3) For {3,6}, {4,4}, and {6,3} the radiating net is iden- 
tical with the periodic plane net. Since these are 
the only regular periodic plane nets (i.e. with all 
polygons n-gons and all points p-connected) all 
higher members of these series, namely, {3,p},p > 6, 
{4,p}, p > 4, and {6,p}, p > 3, and their reciprocals 
can be realized (on the Euclidean plane) only as 
radiating nets. (Part VII was concerned with show- 

Fig. 11. Schlegel diagrams of the Platonic solids. 

Fig. 12. The plane radiating net {7,3}. 

ing that they can also be drawn on certain types of 
three-dimensional periodic surfaces.) If drawn in 
the most symmetrical way the highest axial sym- 
metry is n or p according to whether the centre of 
a polygon or a point is taken as origin. Fig. 12 
shows the central portions of {7,3} drawn in these 
two ways. 

Three-dimensional radiating systems 

For arrangements of links which are symmetrically 
disposed in three dimensions we may expect to find 
three-dimensional radiating systems. We are particu- 
larly interested in the possibility of nets corresponding 
to the spaces marked R in Table 2, and we consider 
first systems of the type n 6 involving four tetrahedral 
bonds. For n = 3 the system consists of a central point 
connected to the vertices of a tetrahedron, or the 
topologically equivalent case where the central point 
is projected through the base of the tetrahedron to 
form a bipyramid [Fig. 13(a) and (b)]. For n--4  each 
vertex of a cube is connected to one of the vertices of 
a circumscribing cube [Fig. 13(c)]. In contrast to the 
finite 3 6 or 4 6 the system 5 6 is an infinite radiating net 
which starts from a central pentagonal dodecahedron 
(Fig. 14). This is surrounded by a shell of 12 dodecahe- 
dra which is succeeded by further shells of dodecahedra. 
This radiating 56 is the net R5 of Table 2. For all of 
these systems y=3 .  The radiating 66 is found to be 
identical with the diamond net (y=6),  i.e. it is also 
periodic (compare the plane nets {3,6}, {4,4}, and {6,3}). 

(a) 
(b) (c) 

Fig. 13. Finite radiating nets: 
(a) and (b) {3,4} or 36, (c) {4,4} or 46. 

& 

Fig. 14. The radiating dodecahedral net {5,4} or 56. 
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The existence of the radiating system 56 suggested 
the possibility of a radiating (3,4)-connected net formed 
of hexagons which would fill the gap between the 
plane 5-gon net and the 7-gon, 8-gon, and 9-gon period- 
ic nets. There is in fact a net of this kind (Fig. 15) which 
consists of an infinite set of concentric tetrahedra 
linked alternately by lines joining vertices and mid- 
points of edges. Apart  from the central group of 10 
3-connected points each successive tetrahedral shell 
contains 6 3-connected and 4 4-connected points so 
that for the infinite system c3 : c4 = 3 : 2. This net, R3,4, 
completes the family of fundamental nets of Table 2. 

Fig. 15. The radiating net {6,43 }. 

The relation of the radiating systems and the surface 
tessellations of part VII to other 4-connected systems 
is shown below. 

Regular and uniform 4-connected systems 
y = 2 These include the following: 

n = 3 octahedron, {3,4} 
n = 4  plane net, {4,4} 
n >_ 5 (a) infinite plane radiating nets, 

(b) the infinite three-dimensional surface 
tessellations of part VII, {5,4}, {6,4}, 
and {7,4}; others have 2(y)3.  (The y 
values for these nets were not given, 
and {7,4} was not illustrated; it is the 
reciprocal of Fig. 22(c) of part VII). 

y = 3  

y = 6  

n = 3 finite radiating 36 [Fig. 13, (a) and (b)] 
n = 4 finite radiating 46 [Fig. 13(c)] 
n = 5 infinite radiating 56 (Fig. 14) 

n = 6 diamond net, 66 or (6,4). 
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A Ternary Alloy with PbCl2-type Structure: TiNiSi(E)* 
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Beck and coworkers have found E phases in several ternary systems of transition elements with either 
silicon or germanium at the composition 1 : 1 : 1. The crystal structure of TiNiSi(E) has been determined 
and refined by least squares with (limited) three-dimensional single-crystal data to a final R value of 
0.086 (excluding 002 due to apparent extinction, and all non-observed reflexions). The lattice parameters 
for the primitive orthorhombic cell are: 

a0= 6.1484+ 0.0012, b0= 7.0173 _+ 0.0014, c0= 3.6698 _+ 0.0007 A. 
The E phase is isotypic with PBC12(C23), space group Pnam. All near-neighbor distances are within 
0.06 A of the following average values: Ti-Ti 3.18, Ti-Ni 2.83, Ti-Si 2-61, Ni-Ni 2.67, Ni-Si 2.33 A. 
The numbers of near-neighbors are compared with those in Co2Si, 0 -  NizSi and U3Si2. 

Introduction 

The E phase was first identified by Westbrook, 
DiCerbo & Peat (1958) in the titanium-nickel-silicon 

* Sponsored by Army Research Office (Durham). Com- 
putations were done in large part at the M. I. T. Computation 
Center. 

system at the composition TiNiSi. Subsequently 
Spiegel, Bardos & Beck (1963) concluded from the 
powder X-ray diffraction diagrams that twenty-one 
additional phases in other ternary systems of transition 
elements with either silicon or germanium are iso- 
morphous with TiNiSi(E) and they indexed the powder 
patterns on large orthorhombic cells. They found 


